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Theory of linear optical properties of fractal clusters is developedf The theory is

based upon the exact properties of dipole polarizability and assumption of the existence

of scaling for the dipole excitations eigenstates) of the fractal. This assumption is self-

consistently validated by the results of the theory and is also confirmed by numerical

stimulation in the framework of the .Monte-Carlo method. Using exact reiations and the

scaling requirements. it is shown that the fractal absorption and density of eigenstates scale

with the same exponent d, -1. The index d0, which is called the optical spectral dimension.

is the counterpart of the Alexander-Orbach fracton dimension d. The dispersion law for

the fractal eigenstates is found: it is governed by d, and the Hausdorff dimension D. Using

this law. the condition of the ccaiing is determined. According to this. the scaling region

occupies the center of the absorption band of the fractal. The spectral dimension d0 is

found for three types of the fractals studied from the results of the numerical simulation.

The wings of the fractal absorption contour are described by introducing the model of

diluted fractals with the use of the binary approximation. The general conclusion is that

large fluctuations of local fields dominate in determining the fractal optical spectra.

t Also with the Institute of Automation and Electrometry, Siberian Branch of the

USSR Academy of Sciences. 630090 Novosibirsk. USSR



1. Introduction

Fractals. as introduced by Benoit Mandelbrot over ten years ago. are scale self-

similar mathematical objects possessing nontrivial geometrical properties,j1.2. -'There exist

various physical realizations of fractals,[3.41. 'and here we shall consider what we believe

to be one of the most important such realizations. namely, fractal clusters. Attention will

be paid mainly to their optical properties.

A fractal cluster is a system of interacting material particles called monomers.

This system is self-similar tin a statistical sense i with respect to scale transformations in

an intermediate region of sizes r. 1?,, < R_ R/. where R is a characteristic separation

:)etween nearest monomers. and R, is the cluster total size. For the sake of brevity, such .

clusters will simply be called fractals. since other realizations of fractals will not be used

in this paper.

Fractals are widespread in nature [4.5]. Products of a broad class of diffusion-

controlled aggregation reactions in solutions and gases can be labelled as fractals. Accord-

ingly. fractals are particles in colloidal solutions, sols and gels. and soot and smoke, and

most macromolecules are fractals. Rough surfaces, disordered layers on surfaces. porous

objects (imicrofilters including activated coal. porous glasses. aerogels, many heterogeneous

catalysts. etc. ) also possess fractal structure in an intermediate range of sizes.

A consequence of the scale self-similarity of fractals is a power dependence of

correlation functions on coordinates. In particular, the pair (density-density) correlation

function in the intermediate region has the scaling form

gr) -4rR r 
(1)

where the index D i: cafled the fractal (external Haussdorff) dimension. Equation (1) is

also a definition of the constant R0. A consequence of (1) is the scaii , behavior of the

number N of monomers in a fractal and its mean density p:

N - R, / RO D . P - R,1Ro)D-3 (2)

A fractal is called nontrivial if D is less than the dimension of the space it is embedded

in. ur in our case of a cluster, if D < 3. As one can see from (2). the mean density of a



..ontrivial fiactal is asymptotically i for R, > R, ) zero. This feature. together with strong

pair correlation (1). is the reason for the great role that riuctuations iay in a nontrivial

fracta.

Among the physical properties of fractals. the optical properties have been the

least studied. For example. in a set of proceedings [4] several years ago devoted to the

physical properties of fractals. there are no papers on the optical properties. The linear

optical (dipole) polarizabilities of fractals have been studied theoretically [6-9]. However.

.n Refs. 6.71 based on various modifications of the mean-field method. strong fluctuations

of (lensity. local fields. etc.) in fractals are not completely taken into account. In later

papers S.91, fluctuations in the immediate surroundings of a monomer are seen to play a

iecisive role. There, the binary approximation was employed: tie interaction of a monomer

with only its nearest neighbor was accurately taken into account. while the effect of other

monomers was simulated by the Lorentz field.

If monomers are high-quality optical resonators. for example. particles of coinage

e.g.. Ag and Au) metals or other metals possessing strong luster. strongly-fluctuating lo-

cal fields in a fractal can significantly exceed the exciting external field. This very feature

brings about a giant enhancement of Raman scattering from fractals [8.91. Nonlinearities.

as usual. increase the effect of fluctuations and related to this are the huge magnitudes

,)f nonlinear polarizabiiities of fractals predicted in [10.11]. This prediction was then con-

firmed experimentally [121 for optical phase conjugation in a degenerate four-wave mixing

process in fractal silver clusters. Photomodification of such clusters, which is selective in

he wavelength and polarization of the radiation. was later observed "131. These estab-

lished effects are rich in physics and promisc interesting applications. Therefore. they are

worthwhile for more detailed theoretical study.

The aim of this paper is to develop a theory of optical properties of fractals. taking

full account of their fluctuation nature without the restriction of the binary approxima-i.,,.

The theory is based on a scale-invariant approach. In Sec. 2 we present the basic equations.

and in Sec. 3 we examine the polarizability in the collective region. The fractal optical

response at the wings of tihe absorption contour is addressed in Sec. 4. results of numerical

simulation are given in Sec. 5. and Sec. 6 provides a concluding discussion.
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2. Basic equations and exact properties of solutions

Let us consider a model of a cluster as a system consisting of N rolarizable particle

called monomers) located at the points ri. i = ... V. The total size of the cluster

is supposed to be much less than the wavelength. Therefore. the interactiua betw'een

monomers at optical frequencies is principally the interaction of their transitional multipole

moments. The main part of this work deals with interactions at distances which are much

greater than the monomer size. which is valid for both the collective region (see Sec. 3)

and diluted fractals in the binary region (see Sec. 4). In this case the most important part

of the multipole interaction is the dipole one. However. if the monomers are conducting

,articles. the charge transfer between them (ohmic current) should also be considered. In

.laxweil's equations. the dipole interaction in a continuous medium is described by the

(isplacement current jd = I e/c)(DE/ot) = ie( /c)E, where e is the dielectric constant. E

is electric field, - is the optical frequency. The ohmic current jo = aE. where is o" is the

conductivity. The ratio JniJdj shows us how important the ohmic coupling is with respect

to the dipolar one. Using the above expressions, in which e is taken to be the dielectric

permittivity of the monomer material, to describe the pair interaction between nearest

monomers. we can obtain the upper estimate for tj/jdI. The reason why this estimate is

the upper one is that the ohmic contact between monomers may have liigh resistance due

lo its small area. surface oxidation. spatial separation. etc.. while the dipole interaction is

dtetermined by geometrical factors and. therefore. is the same order of magnitude as in the

continuous medium. Using the familiar relation a = (4,wdme. we obtain the estimate

j /jdi < Im,/ReeI. In fact. in the visible portion of spectrum this ratio is small for most

metals since -ReE is large. and for semiconductors and dielectrics since ine is small. For

example, for A = 650 nm, Jn/Jdl = 0.07 and 0.02 for Ag and Si. respectively (the optical

data are taken from Ref. 114]). We shall consider materials of the types indicated above

and. therefore. shall neglect the ohmic coupling.

The dipole (transition) moments induced on monomers obey the well-known sys-

tem of equations

V

\oE1 0- t [6,3 - 3n('I)n (Ij) 1 3
)3 3
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where the Greek subscripts stand for tensor components i summation over repeated indices

is implied), and the Latin indices stand for ordinal numbers of monomers: \0 is the dipolar

polarizability of an individual (isolated) monomer, taken to be isotropic to avoid inessential

complications: El") is the electric field of the external (exciting) radiation at the site of

the ith monomer: r,j = ri - r., and nW I = rijiIrij.

In the electrodynamics of continuous media. Eq. 13) is treated in the mean-field

approximation, in which it is reduced to the integral equation for the mean dipole mo-

nentum d. d = koE'' - \o j'rd - 3r(rd)/r"lr-',jgrdr. Taking 1) into account. one

an easily see that for the nontrivial fractal the right-hand side of this equation diverges

;tt small distances as r '-  It means that the most important is -he contribution of the

nearest monomers. This feature was exploited in recent work S-i1 in which the binary

approximation has been developed to exactly take into account the field of the closest

monomer, with the rest of monomers treated by the mean field. Due to the divergence at

r - 0. this approach is sensitive to the small-scale structure of the fractal. and the po-

larizability found does not obey scaling in the general case. In the present paper (Sec. 4),

we introduce the model of diluted fractals, which have the simplest possible small-scale

structure and obey scaling both at intermediate and small scales. In this model. the binary

approximation is shown to correctly describe the wings of the absorption contour of the

,ractals.

We show below (Sec. 3) that the central part of the spectra can self-consistently be

described as scale-invariant. This means that the polarizability is (letermined by collective

long-scale correlated) fluctuations of the local dipole momenta d,. Since these fluctuations

dlominate. the the mean-field approach is not applicable. In this respect. the fractals

resemble systems near the phase transition point. In the collective region. the fractal

optical properties are not sensitive to the small-scale structure, scaling takes place. and

the diluted fractals has the same polarizabilities as the original ones.

To develop the general theory of the optical properties of fractals. we shall use the

approach based on the expansion of polarizability in terms of the exact eigenvectors and

eigenstates of the interaction operator (this is similar to the Lehman expansion in field

theory). Also. such an expansion turns out to be the most efficient computing method for



C

carrying out our numerical simulations in Sec. 5.

To perform the above indicated expansion. Ict us retpresent (3) in the form of an

operator equation by introducing the matrix It' with elements

-3on[6a3 - 3 {[ 3 1  j 1 " (4)

which operates in a 3N-dimensional vector space of the vectors d and E with components

(iald) = di Eja) = E,, (5)

Then the basic system of equations i3) acquires the form

Z + IV)d = E °' (6)

where the complex variable Z with real (-X) and imaginary (-o) parts is introduced.

Z =-(X + b)= ko (7)

The symmetric real matrix IV is diagonalized by the orthogonal transformation

L-11UT = liag(w!,) . UUT = . (S)

where diag(w,), is the diagonalized matrix consisting of eigenvalues it,,, and the super-

script T denotes the transpose. The formal solution of the basic equation 16) has the

form

d = UTdiag( 1 (9)

Expressing the required quantities d, in terms of the eigenvalues w, and components of

the corresponding eigenvectors (n ia). one obtains from (9)

d,= Z (n UIk) (nIUj3) (Z + 'E(O (10)
in

We consider below the clusters whose size R, is much smaller than the radiation

wavelength A. Then the external field E(') may be considered homog-neous. i.e.. not~~~~~~~~~~j a ecniee om~nos ~. o



jiepending on j In this case the iole mnment induced on the i' monomer is exuressed
I'

'n terms of the correspondina inear poiarizability N, r as

, X,,= ,,E.U 11)

It is clear from (10) that \ is given by

(ni I (n- 3) (Z (12)

jn

The poiarizability as an analytical function of Z differs from that expressed in terms of fre-

,puency . In particular. this function is not 'real" in the sense that X-. .

Nevertiieiess. it can be sniown ,irectiv from the solution 1 '2) that the conventional

K-rainers-NKronig formula in X is valid.

X,,X
Re" '(X) 1r, flm\~')~ (;-7 (13)

where P denotes the principal value of the integral. We shall obtain also some other exact

relations for (') which are a consequence of the fact that the eigenvalues U1, are real. the

iiatrix U is orthogonal, and is positive corresponding to normal absorption (we assume

no population inversion 1.

From the form of the solution 12). the exact sum rules follow:

7 'C

I TmX .X)dX . P Re '>,,X()lX = i) (14)

From (14) it can be seen that the absorption integral is conserved: it is the same as for an

isolated monomer. The absorption cross section differs from in\, only by a trivial factor

4rk. where k is the wave vector. As a characteristic of absorption we shall use Im, ,t,

We now obtain an exact relation which is a counterpart of the optical theorem.

For this purpose. from (12) and taking (8) into account, we find a quadratic form of the

polarizabilities:

U 1 3) (') -;- i,),, - 1+,,, 15



Performing in 115) an elementary (iecomposition into simple fractions.

Z Z wj Z- ,W,, - = --1 ;Z- ,)' IhZ 16)

and introducing the mean polarizability of a monomer in the cluster.

1 (17)

we obtain the required relation

( \. 1. = -i , S)

With the aid of IS). let us find the average (over a clusteri of the squared electric fieid E

which acts upon a monomer. This field determines the enhanced Raman scattering from

the ciuster, and also its photomodification (see Sec. 4). The acting (local field is coupled

to the solution of the system 16) in an obvious manner:

E, -'di E3 = V -ly(') E(°) (19)

For definiteness, let us suppose that the external field E is directed along the z-axis. From

IS) and (19) we obtain

I - E$,E " 1" = o (1 - x 2 / 162 ) Im' :: (20)

This relation resembles the Callen-Welton formula. Earlier a result had been obtained

with the use of the binary approximation ;see Eq. (45) in Ref. '9]) which differs from (20)

only by some notations. This result was the basis to develop a theory of enhanced Raman

scattering from fractals.

We emphasize that the above relations (13). (14). (IS) and (20) are exact. They are

valid for an arbitrary cluster (fractal or not) without any averaging over cluster ensemble or

orientation. It is only essential that the cluster consists of monomers with pair interactions

between them which give a linear response to an external field and possess normal (not

population-inverted) absorption.



Let us now invoke rotational syvmmetry. After averaginf- over the orientation 0f

a cluster as a whole t (lenoted beiow its.....the poiarizability tensor i's rediuced to a

21
3

For the first moment of x. we can rind direcily from (12)

A Imki(AdX = P J e(~X 3NrZuLi~~l~&. (2

Accoroingiv to (14'1. -,he first t rrm on the right side of 122) equals zero. The second

tInM with the heip of is re(iuicedj to the form ii ill Jo.LT te atta h

interaction tensor !41 becomes zero when convoluted over the indices o and .1. one comes

to the conclusion that the s econd term is also eq~uai to zero. I.,, such a way. we obtain the

exact sum rule

P Jxmx)xxo .23)

mneaning that the absorpti-n center of a cluster is at X 0.

The universality of the above obtained relations is. In p)articular. (itue to the use of

natuiral variables X ,ind( j for -the prese nt p~rob~lem. These v'triaibles. iniaee(i. dlepend upon

lie frequency &. lout not in a universal way, In wil, foilows. ',t is important to e!stablish

the regrion in which the spectral variable X is chaniff-ng. Let us consider the dependence

in two dlifferent inodels.

First. let a monomer p)ossess a single isolatedi resonance with frequency -'O. relax-

ation rate (homozeneoms width, F and transition (lipole matrix element d1 2 In this case

we have

112r

where Q '-.,:0. One c-an see t hat X i a relative detuning ad Is eaiewdho h

resonance in an isolated monomer. We point out that the first of the relations (14) together

with (231 reproduces the well-known dipole sum rule for the polarizability. Note that the

minimum value of F is equal to the natural (radiative) lincwidth F, = 4k 3 1d12 i>'3h.



ubstitutin 17 = 1',, hi1to Eq. t24 i. re otain for tile resonance , ) i tile upper estimat-

hfl\) -- \. which is muci ,reater than the volume of the inonoiner. 1i at.ord with tile

jTuantum-Inechanicai Breit-\Vwiner formaia. In real clusters, rite wioith iF is determined

i v rauiativeless dissipation and iehsin . p,%d F -> F, Thus. the inaxinitude of Im0-o is

much smaller than .\'. thuuzh it may still be much zreater than the nouiomer size due to

resonant enhancement if. -lie cxample below).

The secontl model, which is realistic, in particular. for clusters obtained by aggre-

Iatiox in colloidal soiutions. considers tile monomer as a macroscopic spuere with radius

8 ,,. consistinz of tit, material with a complex dielectric permittivity - The

18 r:a~i~it ,1 f t - i:'n 8 s)icre i, tiven y tie ,.-eil-known ,,nressio

R11(s - 14 )(s 2)- 1  ~

For the iietallic Fphere. the permittivity is well described by the Drude formula

- - / [(' +- ] (26)

1.Wilcre 5, =coiist is the contrihbutior of the interband transitions (e. . for silver &o z 5). .,P

T;,( ri,;flctron pias ina frequ encv. an1i -, is tile electron collision frequency. For most metals.

i:x particular. for the toble metals. -, < and. consequently. -" <' . In this case. from

n) 1(1 25), one can see that X(- turns to zero at the point of the surface plasmon

resonance. ,here-' -2. From (26) it follows that ,;, - o: 2o.)- '  In the

vicinity of the surface plasmon resonance, the dependence X( ' i reduces to (24) with the
following parameter values: 1 -, ,.,.1 " = 3R ~h ,.,/ 2(sn 2)3/1. F =/2. Also.

it follows from (25) and f 2C) that for . - the variable X tends to -1. In the vicir

oft" the freque:cv- = - - 1 -  the variae Z (7) experiences strong dispersion

.3
Z r 3 1 '32 ,[ ., -- 'd + 1 21 (27)

It follows from 127) that in a small vicinity of Wfd the variable X changes sign. acquiring a

large absolute value limited by .r,,r = 3R-'-. , ,/.
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3. Polarizability of a fractal in the collective region

To obtain the above exact results we (lid not use any specificity of fracta!l. Those

resuits. however, will now be employed to obtain a description of tIhe coiicctive polarizabil-

:tv of fractals. Self-similarity. which is a fi-ndamental property of fractality, means that

a fractal reproduces itself when the spatial scale is changed. Since in general a fractal

is a random object. this reproduction has statistical meaning. A change of length scale

brines about a simultaneous change of the scale of eigenvalues u, and the variable X. As

a consequence of this. intermediate asymptotic values of observed quantities as functions

')f u, and X' should be power-like (scaling).

We shail describe first Iini .X iabsorption) and later consider Re NX) with the

aid of 13). From 112) and taking (7) into account. we see that the universal scaling

behavior of ImXtX) may exist only if X > 6. Then

ImX) = 3 w (n U Ji ))(n)) - .n) (28)

'.rn

where .. denotes an average over the ensemble of fractals. From (2s) it follows that

absorption is determined by those eigenstates for which w,, = X.

The eiienstates of any large system, including the fractal. are characterized by a

,o0ierence length (which turns out to be the wavelength in the trivial case D = 3). within

which the excitations of monomers are strongly correlated. This coherence length is a

function of the generalized frequency X. which we shall denote as L \. The eigcnstates are

Collective. i.e.. delocalized over many monomers. if L > R0 . The scaling should exist in

the intermediate region

Ro < L- < R, (29)

Our basic assumption is that the dependence of L. on X allows the existence of a finite

interval of " in which 129) is satisfied. Assuming so. we shall develop the scale-invariant

theory of the collective excitations of fractals. This theory will eventually allow us to find

the iependence of L\" from the scaling properties of relevant quantities and, in such a way,

to self-consistently confirm the basic assumption. It is also supported by the results of the

numerical simulation (Sec. 5).



In the scaling region 129). the form of the absorption contour Imx(X) should

be power-like. The exact symmetry of the eigenstate problem of the IT- operator with

respect to a sign change of u,, is absent. Consequently. parity in X is not held. suggesting

that the indices for N > 0 and X < 0 could be different. However. the sum rule (23)

together with the self-similarity of a fractal guarantees that these indices coincide, and the

corresponding coefficients also coincide. Thus. in the region (29) (provided X >, 6). a

symmetric scaling dependence of Imy is valid, with coefficients which are determined by

R0 and can be estimated from dimensionality arguments.

in X) R (R IXt)dOI (30)

where d, is an index which we call the optical spectral dimension. From the convergency

requirement for the first of the sum rules / 14), it follows that d, > 0. We should emphasize

that the symmetry of absorption in N is not an exact property, but is valid only in the

collective region, and is violated in the binary region (see Sec. 4)

Let us consider the transformation properties with respect to a change in the

minimum size R0 (renorm-transformation). We take the initial value as R0 = 1. i.e.. we

measure lengths in the unit of the initial size R0 . Increasing Rt0 means coarsing of the

spatial precision with which a fractal is viewed. Such coarsing can be achieved in the

following manner [13]. We first isolate in a fractal fluctuations with sizes on the scale of

I > 1. We then consider monomers. which form such a fluctuation. as a new composite

1 renormalized) monomer. From the property of self-similarity, it follows that the obtained

cluster. consisting of renormalized monomers. is a fractal with the same critical exponents.

and R0 -, 1. The renorm-transformation conserves the form of the absorption contour (30).

provided the collectivity criterion (29) is met.

We now determine the renormalization law for X and find the coherence length

Lx . The renorm-transformation should conserve the total absorption of a fractal. This

requirement. taken together with (2) and (30). reduces to

( ,) (RtIX d) 1 (31)

mm ~ ~ ~ ~ R 0nm 0mwunmmm nmi u maaanin nm
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where the proportionality is understood in tile sense of the dependence on R 0 (and not on

R,). From 31) it is ciar that X tranbforms in the following way:

_YX XRO 3 d, - D)/(d, - 1 )  (32)

We note that in the case of a trivial fractal (D = 3), IX _x R"' independently of the index

d', i.e.. we have the well-known result Re<O x R', which demonstrates the proportionality

of the polaxizability of a composite monomer to its volume. We should point out that the

transformation law 132) is derived from general principles, and the single condition of its

validity is the existence of the scaling behavior of absorption i see below 1.

For strongiv-iisordered systems such as fractals. Alexander 151 has assumed that

Collective states with a given frequency /whose role in this case is played by the variable

X). are characterized by a single coherence length which is an analog of. simultaneously,

the wavelength and localization radius. This property. called strong localization. is a

consequence of the self-similarity of a fractal and its collective states. For a trivial (three-

(dimensional) system, this property in the general case can obviously be violated: the

excitation localization radius can essentially exceed the wavelength, which is the situation

of Anderson localization.

The coherence length LV. as other observable quantities in the scaling regime.

-:ould not depcnd on both the maximum R, and minimum length R0 . The latter require-

ment means that L.- should be an invariant of the renorm-transformation. Taking into

account Eq. (32). one can make sure that it possible to construct only one quantity which

possesses the above indicated properties and has the dimensionality of length.

L\- DcR0(R 3 ! (d.°- 1)/(3 - D) (33)

Thus. for the present problem. Alexander's strong localization follows from scaling. The

relation reciprocal to I33) is the dispersion law for the excitations of the fractal:

X(LX jl x Ro- ( L .iRo) (3 - D )/ ( d,° - 1 (34)

This dispersion law for the collective dipole excitations of the fractal can be considered as

a theorem based upon the general relations and the scaling assumption.
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For the trivial system i D = 3). the expression t33) is singular. which is not sur-

prising (see above). Nevertheless, this singularity has simple physical meaning, and to see

this. we consider the dispersion law t34). For D = 3. it follows from {34) that X(Lx)

does not depend on Lx,. i.e.. on the excitation wavelength. 1XI -- Ro 3 . This estimate

exactly corresponds to the dispersion law texistence of a spectral gap) of long-wave surface

plasmons. Note that in the trivial limit (D - 3) the dipole excitations of a fractal, which

give contribution to the optical absorption. tend exactly to the surface plasmons since the

radius of the fractal R, is assumed to be much less than the radiation wavelength A. To

demonstrate this, consider an averaged trivial cluster as a microscopic sphere. for which

the surface plasmon resonance condition is e' = -2 (cf. discussion of Eqs. (25)-(27)), where

is the dielectric permittivity of the sphere material. Recalling that E = 1 + 4rrRIo\ o

and taking (7) into account, we obtain for the resonance X = - R 3 , in accord with the

above estimate.

For a normal dispersion law, the "frequency" X should decrease with the wave

vector, i.e., with an increase of Lx. Taking into account (34), this leads to the limitation

d, < 1. which we accept (as will be confirmed later by numerical simulations). We shall

not use the renorm-transformations below and shall return to the original value R 0 = 1.

Then the condition (29). which determines the scaling region. together with (2) and (33)

acquires the form

«,a lD - 1)/(1- d °) <' X < 1 (35)

Hence, this region is spread to small IXI and, consequently, occupies the center of the

absorption band (cf. (24)). Obviously, the necessary condition for scaling, XI > 6. is

compatible with (33) only if the Q-factor of the resonance in a monomer is high:

Q= 1/6> 1- (36)

As follows from (35), when a fractal tends to a trivial one (D - 3), the region of collective

behavior in X degenerates to a point corresponding to the frequency of surface plasmons

(see above). Thus. a finite size of the band of collective states of a fractal is entirely due

to its nontriviality.
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The scaling region i35'o can be physically realizable only if the interval of values of

the function X(.,) (7) includes it. This interval depends on which monomers the cluster is

built with. Let us discuss in this connection the above considered model of the spherical

monomer (see (25)-(27) and the corresponding text). The monomer radius R, is supposed

to be on the order of R 0  1 (in the present units). There exist small values of X. including

zero. near the frequency ,, if the surface plasmon resonance is well pronounced. the

condition of which -/ < -, coincides with (36). In practice, it is well met for many metals,

e.g.. for silver < < 1/30. with the resonant frequency ,;, corresponding to the near-UV

wavelength of approximately 300 nm. From the discussion of Eqs. (25)-(27). it follows that

.in the most interestina band of A > 300 (i.e.. soft-UV. visible and IR lialht i the variable

X belongs to the interval from -i to 0. which includes the whole scaling region 135). The

variable X is in the interval from 0 to a large value of - / when is from , to wd

far-UV band), and large negative values of X occur for .. > d-

To summarize the above obtain results. let us point out that we have initially

assumed there to exist the region (29) of the collective fractal excitations. Starting from

this point and using exact relations, we have shown that the absorption is given by the

scaling law (30). found the scaling properties (34) of the variable .. and determined the

dispersion law for the fractal excitations (33) (or (34)). From this law. we have determined

the scaling conditions .35). which predict the final interval i in X or in -:) of the scaling.

Thus. the initial assumption is self-consistently validated. Taking into account divergence

at small r in the mean-field equations (see the discussion after Eq. (3)). the existence of the

scaling mcans that in the region (35) the large-scale fluctuations dominate in determining

the polarizability and cause failure of the mean-field approach. This situation is similar to

the phase transition with X as the transition parameter. X = 0 being the transition point

and the polarizability playing its usual role.

We now proceed to find the relation between the absorption of a fractal. Imy(X).

and density of its eigenstates. O,(X). which is introduced in the conventional way as

[/(X) = - w) (37)

The density v is normalized to one monomer. and the mean value of X weighted by v(X)
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is equal to zero since the interaction tensor (4) is traceless:

Jtv/(X)dX = 3 Xv(X)dX = TrI = 0 (38)

The value of the first integral in (38) is due to the vector character of the interaction

between monomers.

Isolating in Eq. (28) the terms with i = j using the orthogonality property of the

matrix U. from Eq. (8) and comparing the obtained results with Eq. (37). we obtain

Im,- ) It + / (n Iia) (ni 0 (3J 9
t=)l.n

It follows from (38) that the first term in this expression 39) satisfies both sum rules for

Iiny, (14) and (23). Correspondingly, the zeroth and first moments in X of the second term

in (39) are exactly equal to zero. Since this term should also have a scaling dependence

on X (provided (35) is satisfied), it then equals zero. Hence. in the collective region

Imy(X) = -u(X) C< XI (40)

3

i.e. both the absorption and eigenstate density scale with the same index d, (the optical

spectral dimension).

We emphasize that the relation (40) between the fractal optical absorption and

the eigenstate density of its dipolar excitations has also the character of the theorem based

upon exact sum rules and the scaling assumption. The physical meaning of Eq. (40) is

clear. In a strongly-disordered system such as a fractal. all collective eigenstates with

equal statistical weights contribute to the optical absorption. The relation (40), howover.

should only hold for nontrivial fractals in the spectral region (35). Note that at the wings

of the absorption contour, which are described in the binary approximation (Sec. 4), it is

violated In ordered systems, selection rules are valid, and only few states of corresponding

symmetry contribute to the absorption.

The scaling behavior of the density of fractal eigenstates as a function of frequency

was introduced by Alexander and Orbach [16] for the problem of mechanical vibrations
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of fractals ("fractons '. where the index d. corresponding to , in !40). was called the

spectral (fracton) dimension. In the general case. the value of the spectral dimension is

(letermined by the internal fractal geometry. and. for a vector problem. also by the manner

in which the fractal is embedded into the three-dimensional space. In principle, the spectral

dimension may also depend on the interaction between monomers. Thus. the value of the

optical spectral dimension d should not necessarily coincide with the vibrational spectral

dimension in Ref. [161.

In Refs. 13-17] different ways are provided for finding an expression for the dis-

persion relation of fractal vibrations, which in our notation has the form

-Did

Xi x -.. (41)

which obviously differs from (34). In particular, for a trivial fractal (D = 3). the relation

(41) predicts a gapless dispersion law. which is linear for d= 3. An inspection of the

treatments of Refs. i13-17] shows Eq. (41) to be valid only for excitations of the Goldstone-

type (acoustic phonons. magnons and so on), whose corresponding creation-annihilation

operators in the long-wavelength limit turn to generators of symmetry groups of the given

svstem i translations. rotations. etc. ). The dipolar excitations are not of the Goldstone-

type. but rather tend to surface piasmons. which do have a gap in the spectrum. In such

a way, for the plasmon-like excitations considered in present paper the dispersion relation

(34) is valid, and not (41). which holds for phonon-like excitations.

Finally, we briefly consider Re(X). Since the kernel of the integral (Gilbert)

transform (13) by itself does not provide convergence, both the collective region (X < 1)

and wings of the absorption contour (X > 1) give rise to Re~kX). Therefore. Rey(X) is

not described by a scaling dependence even for X in the region (35). This conclusion can

also be reached by starting directly from (12).

4. Wings of the absorption contour and model of diluted fractals

In the previous section the collective region was considered in which the eigenstates

of a fractal are determined by interactions on large scales and spread over many monomers.
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The observable quantities Loverned by such excitations are insensitive to small-scale details

of fractal structure and the form of the interaction of monomers at small distances. The

behavior of such quantities should be universal and scaling. Below we shall describe the

wings of the fractal spectrum (the region iX I > 1). In tills case the external field interacts

with those fractal excitations which. in accord with (33). are localized on a few monomers.

Therefore. small-scale details are essential.

It follows from the above arguments that it is in principle impossible to formulate

a universal description of the wings of a fractal spectrum. It thus seems appropriate to

employ a model of a fractal with extremely simple structure on a small scale. For such

a model we introduce dilute fractals which could be obtained by coarsing a structure of

original fractals. Instead of the renorm-transformation described in Sec. 3. we shall use

a simple and numerically efficient algorithm for the structure coarsing, called dilution.

which consists of the following. Each monomer of an original fractal is randomly left at its

position with some small probability 3 < 1. or is removed with the probability 1 - 3. Then

the fractal as a whole is reduced in size (1/$)ID times. After that. we obtain a fractal

which is characterized by unchanged critical exponents governing the collective region, with

the pair correlation function (1) (R0 = 1) being valid up to small distances on order of

S)1/D << 1. The dilution, indeed. does not change the polarizability of a monomer.

i.e.. it conserves the variable Z. and the total size of the fractal is diminished by a factor

of r 0 . The dilution (random decimation. in other words) eliminates the local structure of a

fractal. such as connectivity. separation between nearest monomers. coordination numbers.

etc.. without affecting the collective region (Sec. 3).

The diluted fractals do not only provide a convenient theoretical model. needed, in

particular, to check the numerical simulation in the spectral wings (see below). They also

can be considered as an idealization for a rather wide class of fractal clusters in nature,

which are formed by random binding of impurities to an original (nondiluted) fractal, with

a small fraction of occupied binding sites. As examples. we may mention dye molecules or

metallic microparticles in complexes with macromolecules. or in pores of glasses, and so

on. Hence. the description of spectral wings in the model of diluted fractals is interesting

by itself.
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To describe the interaction at small distances. which is important for XI > 1. we

bliall use the binary approximation developed earlier [S-111. For each monomer we shall

exactly take into account its interaction with its nearest monomer nei hbor. neglecting the

effect of other monomers. The polarizability of a monomer in such a pair is given by the

tensor ,, []

,= (Z-- (Z - 2r-'- (Z-t ,1 (42)

where r, is the radius vector of the nearest neighbor. n = r,/r. and the superscript (p)

stands for pair-. After averaging over r. we obtain the mean polarizability of a monomer

:n tile fractal as

= J2(Z+r 2 (Z r pr,,dr, (43)

1)

Where pkr, ) is the density of the distribution in distances between nearest neighbors. For

MX 5 it follows from (43) that (cf. (28))

Im 9 -2p( r )O(X) ! 2'/ 3 p(2''1r/ E)(- =)] (44)

where -(X) is the Heaviside unit step function.

At Xl > 1 the main contribution to (44) occurs at small distances r, Here the

following asymptotic form. derived from (1). is valid,

prrn) , Dr - I (45)

which is universal for diluted fractals. Substitution of (45) into (44) yields the following

expression for the far-wing absorption contour:

Imk = 2-= D DXI- I+D/3) [O(X) + 9 D/3-1 0 (--)I1 (46)

As one can see, this is a scaling form but, in contrast to the collective region, the exponent

is greater than unity, and the spectrum is asymmetric with respect to the sign of X (cf.

,40) and the discussion of it). One can show by adding a third monomer to a pair of
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nearest neighbors that the form of the absorption wing is given correctly by the binary

approximation (46) in the leading term in X1 (the relative magnitude of corrections is on

the order of 1I j.K

For the case r, - 1. the distribution ptr) ) cannot be found in a universal form

since it is determined not only by (1) but also by higher correlation functions. To derive

a rough estimate, let us neglect higher correlations. Then the number of monomers in a

fixed vicinity of a given monomer obeys the Poisson distribution and. consequently,
p(r,, ) = DrD - i exp(-rD) (47)

Substitution of (47) into (43) results in the expression

= 'j (- ~ ,Z) 5D Z )i48)
3 [_

where the function SD of the complex variable Z is defined by means of the integral

representation
9dy

SD(Z) DJ y-(I+D/3) exp(_y-D/ 3 ) Zy (49)

and its analytic continuation. The function SD(Z) is analytic in the complex plane with

the branch cut from 0 to B along the real axis: Z = 0 is a second-order branch point. The

polarizability (48) satisfies all the exact relations obtained above.

The form of the expression 148) coincides with that previously derived [8.9], al-

though the function SD(Z) is different. The difference is due to an incorrect averaging in

[8,9] over configurations of a monomer pair in a fractal (see the text between Eqs. (14)

and (15) in Ref. [9]). We emphasize that all the results of Refs. [S-ill remain valid, except

that now the form (49) of the SD-function should be used.

It can easily be shown that in the binary approximation the eigenstate density is

symmetric in X and has the form

I)
1 [26= (1X , 3.-) + 6( X I '- 2 -')] pty,,)dr,, (50)

0

The relation (40) between Im-k(X) and v(X) in the binary region does not hold unless the

polarizability (43) is symmetrized in X. Hence, the contribution from the binary region

does not interfere with the normalization of the relation (40) in the collective region.
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5. Results of numerical simulation

Three types of fractals were studied as obtained by the Monte-Carlo method with

the use of a program generator of random numbers:

(i) Random walks (D = 2) were built on a cubic lattice with monomers placed

at visited sites and subjected to 1000-fold (3 = 0.001) dilution (random decimation - see

Sec. 4). The fractals obtained after the dilution contained a mean number of monomers

of (_V) = 30 (for the control. (N = 15).

ii) Self-avoiding random walks (181 were generated with fixed length and random

tep direction usinz a trial-and-error method. Monomers were placed at nodes and taken

-o be hard spheres of (iameter equal to the step. If any step brought about an intersection

Of spheres, then such a step was rejected and repeated. A 20-fold dilution (.3 = 0.05) was

performed. The clusters thus obtained contain a mean number of monomer of (N) = 25.

Their fractal dimension D = 1.S found with the use of Eq. (1) agreed reasonably with the

published value of D = 1.7 [18.

(iii) The Witten-Sander clusters [19] were built by the simulation of a diffusion-

controlled aggregation of monomers on a cubic lattice and were 20-fold diluted (3 = 0.05)

to obtain (.V) = 25. The fractal dimension was found as D = 2.5. in close agreement with

the known value of D = 2.51 '101.

As the control. a gas of monomers (D = 3) was also used. The dilution for cases

1i) and (iii) above was not very high. nor was the number of monomers in the clusters

studied very large due to limitations of existing computing facilities. However. as will be

shown below, even for such fractals the polarizability per a monomer \ (toes not depend

significantly on the number of monomers.

The polarizability was computed from (12) by diagonalization of the matrix (4)

using the .Jacobi method [201. The principal advantage of this approach is that the relations

113). (14) and (18) are met exactly. Its merits as a computation method are due to the

fact that upon performing the diagonalization once. one finds the solution for any X and

6 by simple summation. For the sake of control we also used a direct solution of the

original system by the Gauss and square-root methods. For all cases the three indicated



methods agreed perfectly. The calculated individual poiarizabilities were averaged over a

large ensemble of fractals 73 clusters for N/ = 30 and '= 23. or 130 for (N) = 15).

The statistical error achieved was less than one percent of the maximum magnitude.

The major portion of our results will be demonstrated for the random-walk fractals.

since in this case the theoretical values of the parameters are exactly known: D = 2

and R 0 = R 1 (63) 1' / 2. where R, is the lattice period. Besides. such fractals can easily

be generated and diluted, and thus not limited by computer capabilities. Therefore. a

high degree of dilution (3 = 0.001') can be achieved. Other types of fractals will also be

considered, but only to examine dependences on D for the cases indicated explicitly.

The linear poiarizabiity \ as a tunction of X is shown in Fi,z. ' for different values

of the parameter ,. One can see that the absorption contour Imi, V has the form of a wide

peak. with its width decreasing and height growing with increase of Q 1/6. In accord

with the results obtained, the dependence on 6 for iXj > 6 is weak. The obvious increase

of statistical noise with diminishing 6 is in agreement with Eq. lS) (the optical theorem).

The width of the fractal absorption contour greatly exceeds that of an individual monomer

(- ). The qualitative behavior of the polarizability for fractals of the other types studied

is close to that shown in Fig. 1.

The absorption contours calculated for the fractals with significantly different mean

numbers of monomers are shown in Fig. 2. It can be seen that for .V' > 13 the depen-

dence of \ on (N) has practically leveled off. This behavior supports the idea of using a

characteristic such as the polarizability of a fractal per one monomer.

The fundamental prediction of the theory is the universal scaling behavior of the

absorption (30) and the eigenstate density (40) in the collective region 135). This prediction

is tested in Fig. 3. From this figure it follows that the absorption and density of states, in

fact. obey Eq. (40) with good accuracy expected from an estimate obtained with the aid

of Eq. (18).

The values of the optical spectral dimension found from Fig. 3 and similar data

for the other types of fractals together with corresponding statistical uncertainties and

values of D are shown in Table 1. It follows from this table that for fractals of a given
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ype. the indices of ImN X j and -i.X ,ifer by less than two stanciard ,ieviations. which
:s statistically insignificant. For ail the cases. the magnitudes of ,., ,ieviate -ignificantly

, on the level of five to twenty standard (leviations) from the ilimitinz values of d, = 1 and

and d., = 0. The fact that d, = 1 is evident directlv from Figs. I and 2: if d = 1 then

the central portion of the absorption contour would be nc a peak but constant. which

is cleariv not the case. We note the absence of a significant correlation b3etween d, and

D. For the triv-al (D = 3) fractal studied, no pronounced scaling behavior is observed, in

orresTnondence with the theory (see. in particular. the collectivity criterion (35i).

It is shown above that for (iliuted fractals. the wings of the absorption contour

X I siould correctly Iin tie iauinf order in X b reproiuceli by the binary

:ipproximation. Reziiar comIputation of \ i in the framework of t his approximation was

arried out according to the followinz procedure. For each monomer the closest neighbor

was found. the quantity \', (X (42) was calculated. then averaging over all the monomers

Of the iven cluster and the ensemble of clusters was carried out. The absorption found

,his way is compared in Fig. 4 with the result computed by the Monte Carlo method

isina The accurate formula f 12) 6 = 0.33) One can see that the agreement is. indeed, very

ood for X1 > 2. Even at the center of the contour the differences are not large. which is

ue to -he fact that , is not very laree. In fact. the maximal radius of coherence for the

* wove indicated ,limensions. ",iic can :e estimated from 33) by substituting X1 =

:s L V 2. and this does not stroniiv exceed R0 = 1. Thus. in this case the universal

-;calinz behavior is not developed, even at the center of the contour. as a consequence of

lie violation of the conidition 36).

In Fig. 4 the result is also presented I dashed curve) for a calculation of the estimate

provided by the analytic formula (48). Its agreement with the result obtained from (12) in

rhe wings of contour is reasonably zood. although at the center it is worse than the regular

inary approximation i lotted curve).

Similar data for o = 0.03 are shown in Fig. 5. Comparing this with Fig. 4.

we conclude that the agreement between the three shown curves at the wings N IXJ > 2)

remains good. However. the central peak can no longer be described by any version of the

)inary approximation. This ,eak is symmetric. wheieas the binary approximation yields
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an asymmetric contour, and given that it is scalable icf. Fig. 3). It is certainly collective.

Lastly. let us describe one of the most important properties of fractals. namely

the existence of high local fields xhich can significantlv exceed the external field. Such

iuctuations bring about giant enhancement of the Raman and nonlinear parametric scat-

tering of light from fractals. which has earlier been predicted based on the use of the binary

approximation S-111.

From the optical theorem 120) and Eqo. (40) and (46). for the enhancement fac-

"or of the local field acting upon a monomer. one can derive the estimates. which are

asyinptoticaily exact in the sense of the dependence on I1 and ¢ in the collective region

E , I , yldo+l
G = -- . (51)E ( ) ! 1 ' 6

and for the diluted fractals in the binary region as

ix I-D/3 (52)

We recall that the existencr )f a nonvanishing collective region is the property of nontrivial

fractals. From the estimates (51) and (52). it follows that for nontrivial fractals in both the

Collective and binary regions. the fluctuations of the local field are strong: the dispersion

()f this field is proportional to a large parameter. the ..-factor of an isolated m( nomer (36).

The enhancement factor G as a function of X for the tractals of the three types

studied is shown in Fig. 6. In accord with the above presented theory, the curves in their

central part. corresponding to the collective region. are symmetric and are described by

the scaling formula (51). The factor G increases with IX. in agreement with (51) and

52). reaching values on the order of 10 (for 6 = 0.1) at the wings. We point out that there

,xists no pronotwced correlation between G and the fractal type. in accord with the fact

that nearly the same values of d, are found above for different :ractals i see Table 1).

In such a way. the present theory and numerical simulation results show that large

fluctuations of the local fields, and hence lant enhancement of the Raman and parametric

scattering, are not a result of using the binary approximation in S-111 but the general

property of nontrivial fractat- whose monomers possess high-Q optical resonances.
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6. Concluding discussion

In this paper we described the optical (dipole) polarizability of fractal clusters. The

principal question investigated is how the self-similarity of a nontrivial fractal in coordinate

space is transferred to the self-similarity of its dipole excitations and optical polarizability.

Our approach to the problem of the fractal optical properties consists in using the exa-t

relations (sum rules for the polarizability obtained in Sec. 2) and consequences of the

scaling. The scaling of the optical polarizability is first introduced as an assumption. then

the scale-invariant theory is developed (Sec. 3). Finally, the results of the theory determine

"onditions of the scaiinL and confirm its validity. Namely, the scaling behavior is shown to

,Xist in the center of the absorption contour of the fractal. The wings of this contour are

,described in the binary approximation (Sec. 4). The numerical simulation results (Sec. 5)

confirm the analytical theory. The new index, optical spectral dimension. governing the

scaling of optical absorption and. also. the dispersion law and the density of eigenstates of

the dipole excitations, is numerically determined for three types of the fractals studied.

Let us discuss the principal points of the present theory and main results obtained

in some more detail, starting with the basic system of equation (3). The interaction

between constituents of the fractal (called monomers) is described by the dipole-dipole

interaction (see i In the scaling region, where the polarizabilities are determined by the

interacticn on distances much greater than the monomer size. the dipole-dipole interaction

is universal and asymptotically exact.

Instead of frequency .;. we have introduced the new variable X (7). in terms

of which the problem of the optical responses is expressed in the universal way. The

analytical properties and sum rules for the polarizability as a function of X differ from

those with ., as the variable. To develop the theory, we introduce the decomposition (see

Eq. i 12)) of the polarizability in the terms of the exact eigenvectors and eigenvalues of

the interaction operator. Using the analytical behavior of the polarizability given by this

decomposition. tensor properties of the interaction and positiveness of absorption ( absence

of the population inversion). the exact sum rules (14),( 18) and (23) are established.

At this point, the assumption about existence of the scaling behavior (see Eqs.
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,29) and (30)) is invoked. Using the above indicated sum rules and the requirement of

,he scale invariance, the forms of the fractal absorption 130) and density of the eigenstates

140) are established. It is rigorously shown that both these quantities scale with the same

index, which is denoted as d, - i. where do is called the optical spectral dimension. The

index do is similar, though it differs in magnitude from the fracton spectral dimension d

introduced by Alexander and Orbach [16] (cf.: both these indices determine the density of

eigenstates in the same manner, but do E [0. 11. while normally d E [1. 31).

To make the theory closed, using the found scaling properties (32) of X. we derive

the dispersion law for the fractal dipole excitations 134). For this derivation. we have

formally invoked Alexanders strong localization hypothesis that there exists a single co-

herence radius of the collective excitation. However. the validity of this hypothesis for the

present problem follows directly from the assumption of scaling: only one quantity with the

dimension of length. which obeys the required scaling properties. can be constructed from

all parameters of the problem. With the aid of the dispersion law obtained, the condition

of the scaling for zhe fractal absorption is found (Eqs. (35) and (36)). It is shown that this

condition can be physically met for the realistic model of the monomer as a macroscopic

sphere. Thus. the existence of the scaling is established in the self-consistent manner.

More exactly. the scaling assumption is shown to be non-self-contradictive.

At the wings of the absorption contour (IXI > 1). the fractal excitations are

primarily two-particle, and the binary approximation [8.9] is applicable. These excitations

are sensitive to small-scale details of fractal structure and. therefore. cannot be described

in a universal form. In connection with this. a model for a diluted fractal is introduced

which is characterized by an extremely simple structure at small distances. completely

defined by the pair correlation (1). and thus by the Haussdorff dimension D. Though in

the binary region there is no scaling in the general case (cf. Eq.(44)), the far wings of

absorption (see Eq. i46)) scales with the index 1 + D/3, which is completely different from

the index do - 1 in the collective region (35). We should emphasize that the behavior in

the binary region is not universal and is characteristic of the diluted fractals (for other

fractals, there may be no scaling at all). The scaling behavior in the collective region (35)

is completely universal and is the same for the diluted fractals as for the initial (before
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,lilution ones.

To complement the theory. we have carried out a numerical solution of the basic

equations. including averaging over an ensemble of fractals. The polarizabilities of fractals

over a wide spectral range have been computed (see Fig. 1). The central portions of the

absorption contour and the eigenstate density obey scaling with the accuracy, which is

expected from the calculation of dispersion (with the use of Eqs. (18).(19) and Fig. 6),

thus confirming the theory. The values of the index d, are found for the three types of the

fractals studied (see Table 1). The indices for a given fractal found from the absorption

and eizenstate density do not deviate significantly, in accord with Eq. (40). The values

:ound fnr d, differ strongly !on the level of many standard deviations from the limiting

.alues d, = 0. 1. Hence. the optical spectral dimension d, proves to be a new nontrivial

index.

Lastly, fluctuations of the local fields (dipole momenta) have been computed

!Fig. 6). These fluctuations proves to be large, much greater than the mean values of

the corresponding quantities. This result is in accord with our understanding of the op-

tical properties of fractals as determined by strong fluctuations. The scaling law and

magnitude of the fluctuations in the collective region are universal in the sense that they

are defined bv d, and do not depend on the small-scale structure of the fractal. The large

fluctuations, in accord with [S-11]. should bring about giant enhancement of the Raman

and nonlinear parametric scattering of light from fractal clusters. which will be considered

elsewhere.
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Table 1

The spectral dimensions d, and estimates of their statistical uncertainty (on the

level of one standard deviation) found from the absorption contour Imyj X) and eigenstate

density Vi X) for different ,ractalb as indicated. The values of D are given for convenience.

Fractal type: Self-avoiding walks Random walks Witten-Sander's clusters

d, from absorption contour: 0.43 ± 0.03 0.38 ± 0.03 0.49 ± 0.02

d, from eigenstate density: 0.54 ± 0.08 0.33 + 0.05 0.31 ± 0.06

D found: 1.S 2.0 2.5
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Fi. . Fractal polarizability iD = 2. N = 30) for (lifferent parameters.

Fiz. 2. Fractal absorption (D = 2) for different values of the mean number of monomers.

FiE. 3. Fractal absorption as a function of X (for X > 0) -n a double logarithmic scale: 1

- found from the exact formula 112): 2 - expressed via the state density according

to (40). The corresponding lines are obtained by linear regression. The values of

the optical dimension obtained see in Table 1.

Fig. 4. Fractal absorption at 6 = 0.33: 1 - calculated from the exact formula (12): 2 - in

the binary approximation using (42) and numerical averaging: 3 - in the binary

approximation from the estimate formula (48).

Fi. .3. Same as Fig. 4 but for , = 0.03.

Fig. 6. Enhancement factor G (normalized by 6 ) of the local field intensity plotted against

X for the three types of fractals studied (D = 1.8. 2.0. 2.5) with 6 = 0.1.
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